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ABSTRACT

Sequential designs are proposed for clinical trials to compare

two binomial success probabilities, p1 and p2. Approximations to the

operating characteristics and expected sample size are obtained and

compared with simulations. Special reference is made to the problem of

comparing vasopressin and placebo for stopping upper gastrointestinal

hemorrhage.
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A SEQUENTIAL CLINICAL TRIAL FOR TESTING p1 p2

1. Introduction

This paper presents a class of sequential tests for comparing

two binomial success probabilities p1 and p2. Although the method is a

general one, it was motivated by a clinical trial for testing the effi-

cacy of vasopressin (a hormone which constricts blood vessels) in

stopping upper gastrointestinal hemorrhage; and although this report Is

primarily theoretical, reference will be made to the trial of vaso—

pressin because It seems to illustrate clearly certain advantages and

disadvantages of a sequential design in clinical trials.

Two conditions indicating a sequential design are (I) a

serious disease, so that ethical considerations mandate the early ter-

mination of a trial in which one treatment appears especially

effective, and (ii) a response time which is short compared to the

time between patient arrivals, so that it Is feasible to evaluate the

current state of affairs before admitting new patients to the study.

Massive upper gastrointestinal hemorrhage satisfies these requirements,

since failure to control it within hours may lead to death or to surgi-

cal intervention.

One other circumstance which seems to indicate a sequential

trial in this particular case is the existence of earlier, favorable

reports on the use of vasopressin for stopping upper gastrointestinal

hemorrhage. (See especially Conn et al., 1975.)

1
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Although certain reservations concerning these earlier trials and the

desire to investigate a much simpler mode of administration of the drug

suggest a new trial, a sequential design provides protection against

the lengthy continuation of this trial, should the previous, favorable

results be repeated .

For purposes of sequential analysis this trial is one of corn—

paring the probability p
1 
of success using vasopressin to the probabil-

ity p
2 of success with placebo. Success is defined as a cessation of

bleeding within five hours and no recurrence within six. Other end-

points of interest are the time until bleeding initially ceases, recur-

rence of bleeding, severity of bleeding measured by transfusion

requirements, the need for surgical Intervention, and death. Choice of

a sequential design for testing p
1
=p

2 makes the Implicit assumption

that If p
1 
appears to be considerably larger than p2. that by itself is

sufficient to terminate the trial and indicate the use of vasopressin.

In practice one would probably be reluctant to terminate early unless the

other factors also consistently favor vasopressin, although it would

defeat the purpose of a sequential trial to insist that these factors

show “statistically significant” differences between treatment and

control. Conversely, in the absence of a strong indication for vaso—

pressin based on success rate alone, It may be desirable to analyze

other factors rather carefully. The extent to which a sequential

design introduces a bias which makes these other analyses difficult is

perhaps its most serious disadvantage. (This point will be discussed

again in Section 2.)
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In addition to studying the specific problem of testing

= 

~2’ 
a primary goal of this paper is to indicate how arguments

developed by Siegmund (1977, 1978) to deal with normally distributed

data can be adapted and supplemented by simulations to obtain a rea8on-

ably clear understanding of a similar but more difficult problem.

Section 2 reviews pertinent material for an analogous problem with

normal data. A modification of the repeated significance tests advo—

cated by Armitage (1975) is suggested and their properties studied.

Section 3 returns to the problem of testing p1 
= p2. Mathematical

results are collected in three appendices

.3



2. Normal Data With Known Variance

The normal distribution with known variance is relatively

simple both conceptually and technically and suggests useful approxima-

tions for more complex situations. In this section known results for

the repeated significance tests advocated by Armitage (e.g., Armitage,

1975) are reviewed and a modification of these tests suggested and

studied.

The simplest situation occurs in a paired comparison design, in

which for each n — 1,2,... the observation x represents the differ-

ence in response of the nth pair of subjects, one of whom receives

treatment A and the other treatment B. It is assumed that the x are

independent and normally distributed with expectation ~.i and known vari-

ance a2 Let a = x1 + ... ÷ x , and given b1 
> 0 and = 1,2,...

define

(1) T
1 

— first n > m 0 such that js
~~ 

> b
1
cln½

Let m1 > a
0 be a positive integer. The sequential test of H

0 
: = 0

against H
1 : ~1 ~ 0 which terminates sampling at min(T1,m1

) and rejects

if and only if T1 
< m

1 
is the repeated significance test of

Armitage (1975).

Let 0 - i/a. The distribution of T
1 
and hence the power func-

tion of this test depend on p and 0 only through the value of 0. By

repeated numerical integration McPherson and Armitage (l97l)——see also

Armitage (1975)——have provided tables which allow one to choose the

design parameters a
1 and b

1 
to attain a specified significance level

4
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F

= P
0CT <m 

} and power 1-B = P
0 
{T
1
<m

1
} at a given value 8 ~ 0.

1
Accurate analytic approximations to ci and B were given by Siegmund

(1977, l978)——see Appendix A for a suimnary of the pertinent results

adapted to the present requirements.

Consider a repeated significance test and a fixed sample size

test of the same significance level and power at some given 0
~ ~ 

0.

The advantage of the sequential test is that if (O~ is large, indica-

ting that one treatment is considerably superior, the expected sample

size of the sequential test is much smaller than the fixed sample size.

Concomitant disadvantages are that the sequential test has a consider—

ably larger maximum sample size and less power for detecting values 0

closer to zero than

A class of modified repeated significance tests which interpo-

late the fixed sample size and repeated significance tests have been

suggested independently by Peto et al. (1976) and Siegmund (1978), but

their properties have not been studied. Let 0 < c < b and m
0 

< m be

given, and let T be defined by (1) with b in place of b1
. Stop saxnp—

ling at min(T,m) and reject H0 if either T < m or T > in and !s I > ciu½.

For fixed m
0 
there are three parameters m, b, and c defining such a

modified repeated significance test and hence the-re are many tests

having a specified significance level and power at a given 81 ~ 
0.

Relative to a given repeated significance test defined by m1 
and b1,

the corresponding modified tests have m < m1 
and b > b

1
. The extreme

case b = ~ corresponds to a fixed sample size test with rejection

region ‘~ m~ 
> ~~~ whereas c = b b

1 
and in = m

1 
give a repeated

significance test. Figure 1 illustrates these relations.

5
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Table 1 gives numerical examples Illustrating various relations

among fixed sample size, repeated significance tests, and the modified

tests suggested here. The approximations given in Appendices A and B

were used to perform the required calculations, except for those

entries which could be obtained from Armitage (1975), p. 104.

(Simulations indicate that these approximations are quite accurate.)

For all tests the over—all significance level is .05 and m
0 

= 1. The

maximum sample sizes were taken to be equal and large enough to include

the apparent range of possibilities for the proposed vasopressin study.

The entry mf 
denotes that fixed sample size which would yield the same

power at the indicated 0 as the given sequential test. One measure of

the savings in sample size for the sequential tests compared to fixed

sample size tests is R = (m
f 

— expected sample size)/m
f
. For the modi-

fied tests b was chosen fairly large, so that P
0~
T<m} is slightly less

than .02. The entry 1_ B * denotes the probability at 0 of early

termination, P8~
T(m}.

A reasonable over—all conclusion seems to be that for about a

10% increase in the maximum sample size of a fixed sample test, a modi—

fi~’d se~uentia1 test can yield about the same power and a 40% reduction

in the expected sample size for 18! large enough that the power

approaches one. Comparatively, a repeated significance test obtains a

greater reduction in expected sample size for large 1°! at the cost of

a considerable increase in the maximum sample size and some loss of

power. The relative advantages and disadvantages of the repeated sig—

nificance tests compared to the modified tests become more pronounced

with larger patient horizons.

7 
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The most obvious appeal of these modified repeated significance

tests is that they provide insurance against a long trial should one

treatment seem consider&- 1v superior without as large a maximum sample

size or as great a loss of power to detect smaller differences as the

usual repeated significance tests.

Although difficult to quantify , the following additional

arguments in favor of the modified tests seem to warrant some

discussion.

(I) One disadvantage of the possible early termination of a

sequential test is that it may prevent the accumulation of sufficient

evidence against H0 
to be thoroughly convincing. For a repeated

significance test, if T1 
= n < in1, the observed significance level or

P—value of the test may be defined as P0~T1
<n}. This is a simple

index of how convincing the data against H0 are; but since P0~T1< ri} is

approximately proportional to log n (Siegmund, 1977 , or Appendix A),

even for n much smaller than in
1 

it may not be appreciably smaller than

the over—all significance level, P0
{T
1
<m

1
}. For example, for the

first repeated significance test in Table 1, which has in
1 

= 49 and

ci = .05, if T1 
= 16 , the observed significance level is

P
01T1

< 16} .032. By way of contrast , for a modified test the over-

all significance level is

(2) ci = P
0
CT <m} + P

0~
T>m , cm½ < l5m 1

~
m
~~

If T = n < m , the observed significance P0
{T< n} is no greater than

P0
CT<m }, which may be made small by taking b large. For the first

9 
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modified test in Table 1, P0
{T< 49} ~ .018 and P0~T<l6) .011. A

similar algument applies to other indices of “convincingness,” e.g.., a

lower confidence bound on 10 1 (cf. Siegmund, 1978).

(ii) In many cases the parameter 0 represents one direction in a

multidimensional space. Implicit in the use of a sequential test is

the assumption that if l e t appears to be large, that by itself will

play a dominant role in the choice of treatment (although one would

presumably look at other factors to see that they are reasonably con-

sistent with this conclusion). However, if t e l is small, a more

detailed analysis of these other factors may be important . For

example, if vasopressin reduces bleeding sufficiently that surgery need

not be performed on an emergency basis, it would be a useful treatment ,

even though its “success” rate may be no higher than for placebo.

Use of a data dependent stopping rule introduces a bias which

tends to make 10 1 seem larger than it actually is. (See Siegmund ,

1978, for a discussion of the magnitude of this bias.) By using a

modified test with b large enough that P0~T<m } is relatively small for

small l e t , one reduces the biasing effect of the stopping rule,
particularly for small l o t when analysis of other variables may play an

important role.

1T I 1± _ . . .~~~~~~~ . 
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3. Comparing Two Binonilals

The clinical trial of vasopressin may be regarded as one of

comparing two binomial success probabilities p
1 and p2, where p

1 is the

probability of success with vasopressin and p
2 the probability of

success with placebo. There are possibilities for stratifying the

population, e.g., according to the cause of bleeding, but initially it

is easier to suppose that all data are pooled.

To simplify the discussion it is assumed that observations are

taken in pairs with one member of each pair assigned to treatment and

the other to control. The biased coin design of Efron (1971) pro-

vides a reasonable scheme for approximating this situation while main-

taining a high level of unpredictability as to exactly which treatment

will be assigned to the next patient. For the first two tests dis-

cussed below patients may easily be assigned to treatment or control in

a 2 to 1 or other ratio. The matched pairs test described later

relies heavily on approximately balanced allocation to treatment and

control.

For theoretical discussions of clinical trials it is customary

to consider testing p1 
= p2 against the two—sided alternative p1 #

and that custom is followed here. For a comparison of treatment and

placebo it is sometimes appropriate to consider only the one—sided

alternative p1 > p2. The appropriate modifications are obvious, and

for the numerical examples presented later give tests having a signifi—

cance level about one—half that of the two—sided tests.
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Assume then that the data consists of pairs

(x 2,y2),..., where the x ’s and y ’s are independent random variables

assuming the values 1 and 0. Let P~x~~~l} = p1, ~{y~ =i} = p2 ,

= 1 — p1 and q2 
= 1 — p

2
. It is desired to obtain a søquential test

of }~~: p1 p2 against H1 p1 ~ 
p2 which on the average requires a

small number of observations to reach a decision whenever p
1 
and p

2

differ substantially.

Two obvious candidates are sequential versions of the gener-

alized likelihood ratio test and of the test for independence in

2x2 tables. As one might expect, these tests perform similarly; but

there are slight differences which may be important in some

applications.

Let H(x) = x log x + (l— x)log(l — x) and

I(x ,y) = H(x) + H(y) — 211 [~(x+y)]. The log generalized likelihood

ratio for testing H0 : p1 
= p2 against H1 

: p
1 ~ 

p2 
based on n pairs of

— —  — - i nobservations is i = nI(x , y  ), where x = n Z x and

y = n~~ ~~ y~. In analogy with (1), given integers in~ < m and real

numbers 0 < c < b, define

(4) T = f irs t n > m
0 

such that (2 ~~)½ > b

Stop at min(T,m) and reject H0 
if either T < m or T > m and (22 m)

½ > ~~

A Taylor series expansion about (p1,p2
) shows tha t (2n~n)

½

behaves approximately like the absolute value of a sum of 11 independent

identically distributed random variables with mean

(5) p {2I(p1,p2)f~

12
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and var iance

(6) ~
2 

(p
1q1 

log2(p
1~ /q1~) + p2q2 1og

2
(p2~/q1~)}/2r(p1,p2) ,

where p (p
1+p2)/2  and q = 1 — p. This suggests that under

H1 : p1 # p2. one may approximate the behavior of (2n L~)
½ by Brownian

motion with drift p and variance ~
2 for the purpose of computing the

power and expected sample size of the test. The relevant formulas are

summarized in Appendices A and B. Table 2 below indicates that these

approximations are reasonably accurate.

Approximating the significance level of this test poses a more

difficult problem. Let P( .~ denote the probability measure on

sequences (x1,y1) , (x 2 ,y 2),..., determined by p1 and p2. The signif i—

cance level of the modified repeated significance test defined above is

for p
1 p2 

= p

(7) a( p) = P(~ ~)fT1m} + P(~~~)CT>m~ (29~m)
½ > c}

The difficulties arise with the first term on the right hand side of

(7). The second term may be approximated by the upper bound

P(~~~)
fC ( (2L )½ <b }, which may in turn be approximated by

2[~ (b) —~~(c)], since 2t~ is asymptotically x
2 with one degree of free—

dome under H
0
. In principle the methods of Lai and Siegmund (1977) may

be adapted to give an asymptotic approximation to P
(~~~)

{T<m } as

b 4- ~, m 4- co , and m
0 

-‘- 
~ in such a way that bm~~ + 01 and bm~~ + 00~ 

A

heuristic sketch of the rather elaborate computations is given in

Appendix C. The resulting formula involves a numerical integration,

13 
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which was easy in the case of normal rand om var iables, but in this case

remains a difficult unsolved problem. A further “no overshoot” approx-

imation to this integral yields a crude but simple approximate upper

bound: for p <

(8) P
(~~~)

{T~.1D} < (,T~~pqa)
½ e~~ J ~~~~~~~~~~~~~~~~~~~~ (2q—l+~) dF~.

(O ,2p)fl(~:00< f2I(~,2p—~) ~
½ < 81)

Table 2 gives two numerical examples, which are roughly compar-

able to the normal examples in Table 1. The first entry in each cell

is a Monte Carlo estimate; the parenthetical entries are analytic

approximations. The ± figures are one estimated standard error. Where

no ± figure is given, the Monte Carlo estimate is a relative

frequency r, the standard error of which may be estimated by the usual

r(1— r)/N, where N is the number of repetitions of the experiment.

Except for the probabilities P~ )
fT < m} and a(p), N = 900. For these

probabilities N = 5000 and the method of importance sampling mentioned

in Appendix C was used. Generally speaking, the analytic approxima-

tions are reasonably good except for the null hypothesis probabilities

P(~~~)-(T1m} 
and ct(p), for which they are too large as expected . The

author has performed other simulations and found the approximations to

hold up over a wider range of parameter values than those reported

here.

Because of the discreteness of the underlying data, the choice

of m can have a substantial effect on P CT<m ). Taking a about
0 (p,p) — 0

equal to seems reasonable and has the additional desirable property

14
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TABLE 2

SEQUENTIAL GENERALIZED LIKELIHOOD RATIO TEST

P{T -< m} PfReject H
0
) E(TA m)

Case l: m0 7 , m — 4 9 , b — 3 . 1 5 , c — 2 . 1 5

.5 , .5 .017 ± .001 (.023) .045 ± .003 ( .053) 48.5 ± .1

.7 , .5 .238 (.231) .474 ( .451) 44.1 ± .4

.8 , .5 .629 (.623) .851 ( .849) 35.7 ± .5 (34.7)

.4 , .4 .019 ± .001 (.024) .041 ± .002 ( .054) 48 .3 ± .1

.6 , .4 .208 (.225) .448 ( .435) 44.3 ± .4

.7 , .4 .578 (.571) .827 ( .816) 36.5 ± .5 (37 .0)

.8 , .4 .902 (.900) .983 ( .981) 25.8 ± .4 (24 .9)

.3, .3 .018 ± .001 (.024) .046 ± .003 ( .054) 48.3 ± .1

.7 , .3 .885 (.880) .979 ( .976) 25.9 ± .4 (25.8)

.2 , .2 .016 ± .001 (.017) .046 ± .003 ( .047) 48.4 ± .1

Case II: a0 10, a — 100, b — 3.2 , c — 2.15

.5 , .5 .018 ± .001 (.021) .045 ± .004 ( .051) 98.5 ± .3

.7 , .5 .506 (.510) .802 ( .775) 79.0 ± .9 (82.7)

.8, .5 .948 ( .945) .995 ( .992) 45.7 ± .8 (45.4)

.4, .4 .017 ± .001 (.021) .044 ± .004 ( .051) 98.5 ± .3

.6 , .4 .479 (.496) .761 ( .757) 79.1 ± .9 (85.7)

.7, .4 .917 (.918) .988 ( .986) 51.4 ± .9 (48.4)

.8, .4 .998 (.998) 1.00 (1.00 ) 28.8 ± .5 (27.0)

.3, .3 .019 ± .001 (.024) .046 ± .004 ( .054) 99.1 ± .3

.7, .3 .998 (.998) 1.00 (1.00 ) 30.2 ± .6 (28.3)

.2, .2 .017 ± .001 (.021) .035 ± .004 ( .051) 98.9 ± .3

*The cases (p1,p 2
) — (.5 ,.3) , (.6 ,. 3), ( .5 , .2) , and ( .6 ,.2) are by

symmetry the same as ( .7 ,.5) , ( .7 , .4) , (.8 ,.5) , and (.8,.4)
respectively.

-. 15
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of making P (~~~ ) CT~$mJ fairly constant as a function of p, at least for

p not too near 0 or 1. For this choice of m , P ~T<m J also seems0 (p,p) —

to be quite well approximated by the analogous probability for normal

random variables with a0 — 1. Although there is no apparent reason why

this should be so , it seems to provide reasonable quidelines for tenta-

tively selecting b and m subject to verification by a Monte Carlo

experiment.

The customary x2 statistic for testing p1 = p2 is

- n(~~~
_
~~~) 2 / 2 p q ,  where p~ = 

~~~~~~~ 
and q~ = 1 - 

~~ 
A

sequential test analogous to that discussed above may be defined by the

stopping rule (4) with in place of (2Z
n)
½
• Again sampling termin-

ates at min(T,m) and H
0 
is rejected if either T < m or T > a and

> c.

For given b , c, m0, and a, simulations show that P , ~{T c m}

is generally smaller for this test and the expected sample size larger

than for the likelihood ratio tests. If b and c are decreased to make

P(~~~)
{T~~m} and the significance levels comparable, there seems to be

essentially no difference in the power and expected sample size of the

two tests, at least over the range studied in Table 2. Brownian motion

approximations similar to those of Table 2 seem adequate when p
1 ~

although in this case the approximating random walk has the slightly

differen t expectation

p1 —

TTT~~T. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~ ~~~~~~~~~~
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and variance

+ p2q2f _ (p 1,p 2)

where

— r±~~ — (p1 — p 2)(q1 — p 2)/4)
2/2(~~)

3

One slight advantage that the likelihood ratio test seems to

have over the test is tha t its value of P (~~~ ) -(Tiin} may be more

nearly constant as p gets close to 0 or 1. Previous experience sug-

gests that extreme values of p are not likely in the case of upper

gastrointestinal hemorrhage, and hence they were not systematically

investigated . Of course, the statistic is easier to compute.

Otherwise, the authors’ slight preference for the likelihood ratio test

is based on the existence of the primitive but interesting null hypo-

thesis theory which may be developed for it and which makes selection

of the design parameters m0, a, b, and c slightly easier.

Yet a third test of p
1 

= p
2 

(one which differs from the other

two in several important respects) is obtained by discarding those

pairs for which x~ = y~, and basing a test on the number of times x1 — 1

among those pairs for which X
i 
# y~ . This device was suggested by

Wald (1947 , p. 107) and has been advocated by Armitage (1975) for

general use in making sequential binomial comparisons. It reduces the

problem of testing the equality of two binomial parameters p1 and p2 to

that of testing whether a single binomial parameter X equals ~, where

A p1q21(p1q2+p2q1
) = P ( P P ) {xj lIX j~

’Yi
).

17
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Let n~ be the number of pairs i < n with x
1 ~ y~ and let z be

the proportion of pairs with x~ — 1 among those with i < n and x~ # y1.

The log generalized likelihood ratio for testing H
0 : A — against

H
1 
: A # is

— 
#fJ~() —H(+)J

In analogy with (4), given b, c , m0, and m let

(9) T# — first > in0 such that (29.!I
#)
½ > b

Stop sampling at T# if T
# 

< m and otherwise when n# m. Reject H0 if

a or T# > a and (2~
:
~)

½ > c.

Although a direct numerical approach is easy, for present pur-

poses it is simpler to adapt the methods introduced already to compute

approximately various properties of these tests. For Brownian motion

approximations to the distribution of T
# 
under H1, the appropriate mean

and variance are

(10) — ~2[H(X) 
_H(~)))

½

and

(11) A ( l _ A ) l o g 2 [A/ (l _ A ) } / 2 f H ( A ) _ H ( ~ ) ]

w’- -~re A — p
1q2/(p1q2

-4- p
2
q
1
). A “no overshoot ” approximation analogous

to (8) is

(12) P {T # < m )  < (2a/71 ) ½ 
~~~ J (~~(l— ~ ) [H(~ )— H(~ ) )) ½ d~- ½(0,½)fl{E:00

<{2[H(~)—H(½))) 
<8

1
)

- -  

18
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For b — 3.15, c — 2.15, a = 49, and a0 
= 8 (it is impossible to stop

bef ore n~ = 8 for this value of b) ,  (12) gives P
(~ )CT

<m ) < .020.

Monte Carlo estimates based on 5000 repetitions for this probability

and the over—all significance level are respectively .018 ± .000 and

.056 ± .002. For p
1 

= p2 about equal to .5, it takes on average about

two pairs (x~~~~) to obtain one pair with x ~ y .  Thus, a maximum

value m = 49 corresponds roughly to a maximum value of n = 98. Hence,

for p
1 

= p
2 .5 this test is comparable to the second test in Table 2,

although its over—all significance level is somewhat larger. Table 3

gives 900 repetition Monte Carlo and analytic approximations for some

additional comparisons with the second test in Table 2. The analytic

approximations to P~ ~~Reject H0
) are obtained by a normal approxi—

mation with continuity correction; the other analytic results use

Brownian motion with mean and variance given by (10) and (11). These

figures suggest that in terms of operating characteristic and expected

sample size there is no strong reason for preferring one test to the

other. If the values of c were altered slightly to make the over—all

significance levels of the matched pairs test and the two population

test more nearly equal, the power functions would tend to converge, and

the two tests would appear to be even more similar.

There are several important differences between the matched

pairs test and the likelihood ratio test defined by (4). As was noted

earlier, the matched pairs test cannot be used unless approximately

equal numbers of patients are allocated to treatment and control,

whereas the likelihood ratio test has no such restriction. Even in the

19 
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case of equal allocations to treatment and control the matched pairs

test has the disadvantage that its maximum sample size is a random

variable. If N denotes the number of pairs (x~,y) which must be

observed until n~ = m , then N is the waiting time until a “successes”

in Bernoulli trials with success probability CS = p1q2 + p2q1
. Hence,

E, ~N m/~5 and var,, \ (N) = m(l—aS)/a52. If in the preceding
vP1,P2i

example p1 
= p

2 
=.5, then E1 \(N) = var .,(N) = 98. However,

if p1 
= p2 

= .3, then E~ ~(N) = 116.7 and var,, ~(N) = (12.7)2,
‘.P1,P2i

so one may with reasonably large probability attain 49 pairs having

x ~ y in fewer than 116.7 — 12.7 104 or more than 116.7 + 12.7 130

total pairs. The situation is worse for larger departures from CS = 1/2.

Without some compensating feature it seems doubtful that one would pre-

fer this test to that determined by (4), except perhaps in those cases

when p
1 
and p2 are expected to be near 0 or 1.

There are, however, compensating features, the most important

of which is the use of the matched pairs test to deal with stratified

populations. By pairing observations within strata it is often possi-

ble in effect to increase the value of A and hence the sensitivity of

the test. (See Armitage, 1975, especially p. 86.)

Upper gastrointestinal hemorrhage has several common causes.

Very tentative figures from previous studies suggest that both the

spontaneous remission rate and the success rate with vasopressin vary

with cause. With some grouping of causes according to these apparent

remission rates, perhaps 90—95% of all patients can be put into three

strata: (a) esophagitis, gastritis, Mallory—Weiss tear ; (b) various
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ulcers; and (c) esophageal varices. Highly speculative success rates

with and without vasopressin may be approximately .7 and .5 for (a),

.5 and .3 for (b), and .7 and .3 for (c). It is also difficult to

guess the size of the various strata. (For example, the percentage of

variceal patients is larger in populations with a large proportion of

alcoholics——hence, typically larger at V. A. hospitals than at others.)

But the ratio 25:25:50 may be a reasonable approximation. If these

figures are correct , then in the entire population p1 = .65 and

= .35, so random pairing gives A = .775. Matching pairs within

strata gives A = .778. Modest variations in these assumed figures

consistently yield differences in A of less than .01. In general,

stratification increases slightly the average number of pairs required

to obtain a pair with X ~ y ,  which cancels to some extent the small

advantage gained by increasing A.

The failure of stratification to produce a more dramatic effect

is presumably due to the fact that with the maximum sample sizes

envisaged here, a treatment effect with an appreciable probability of

being detected must be as large or larger than differences among

strata. For larger experiments designed to detect smaller treatment

effects, the value of stratification should be re—examined .

The preceding analysis ignores the possibility of a time trend ,

against which pairing of patients according to their arrival time pro-

vides protection. The history of the treatment of upper gastrointes—

tinal bleeding and the simple mode of administration of vasopressin in

this trial suggest that time trends do not pose serious problems.

22
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In summary , the modest increase in sensitivity of the matched

pairs test in the range of parameters and sample sizes considered for

the vasopressin study does not seem sufficient compensation for the

random variation in its maximum sample size and its failure to deal

adequately with unbalanced allocations to treatment and control.

~~~~~
---

~~~~~~~~~~~~~~— ~~~~~_ _1_ _ __ ~~~~~~~~~~
-.—

~~~
-- - - -

~~~~~~~~~~~~
---

~~~~~~~~~~~~



APPEND IX A

PROBABILITY APPROXIMATIONS FOR NORMAL DATA

Let x1,x2,..., be independent normally distributed random

variables with mean 0 and variance 1. Let 5 = x +.. +x andn 1 n

(A.l) T first n > m
0 such that I S )  > bn½

Let a > a
0 
and 0 < e < b. The over—all significance level of the modi—

fied repeated significance test studied in Section 2 is

(A.2) o. = P
0
{T< tU} + P

0~
T>m , )s) >cm½}

An upper bound for the second term which is fairly accurate when c is

small compared to b is

(A.3) p
01cm

½ < Isa) ~~~~

The first term may be approximated using results of Siegmund (1977).

If b + ~ and a 4- ~ in such a way that b m½ ø1, then

—b2/2
(A.5) P

0
{T<m) - (2/7r ) ½ b e  4° fv(x)/x)dx

where

(A. 6) v(x)  = 2 exp ( _ 2 Z  
1n ~ (_ 4 x n½) ]/x 2

The approximation (A.5) i~ very accurate when a0 = 1. For larger

values of one seems to obtain a better approximation by assuming in

addition that a0 4- ~ and b = m~~00. Then
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(A.7) P
0
{T<m} = P

0
{)s ) >btn½) + P

0
{m
0
<T<m}

~ b~/2 o
~- 2{1-~~(b)] + (2hr)~~be [V(x)/x]dx

1

Although the first term on the right hand side of (A.7) is of smaller

order of magnitude than the second, and hence there is no good

mathematical reason for including it, its inclusion seems to give more

accurate numerical results when compared with simulations

(cf. equation (50) of Siegmund , 1977).

It is easy to compute the function v(x) defined in (A.6)

numerically. Woodroofe (1978b) has tabled an integral equivalent to

that in (A.5). Siegmund (1979) has shown that for x less than about 2,

V(x) is well approximated by exp(— .583x), and hence for many values of

80 
and 81 the integrals in (A.5) and (A.7) may be obtained from tables

of the exponential integral and the value

.224

Let T+ be defined by (A.l) with s in place of I s i .  According

to Siegmund (1978), if ~~~ m-~~, and b= m½ 01, for each fixed 8 > 0 , x > 0

(A.8) P
0CT~

-(m , s < b m ½ _ x }  ~(o1)~rm½(o1_e )Ie
Ox/m½ e

For Brownian motion the corresponding approximation has 1 in place of

v(01
). Together with the obvious decomposition

p
0 
{T
+ 

< a) 
~ ~m

> b m½) + P0 
{ T
+ 

< a, <b

(A.8) allows one to approximate P
8
1T<m ) for 8 ~ 0.

25
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APPENDIX B

APPROXIMATE EXPECTED SA~~ LE SIZE FOR NORMAL DATA

Let Cx(t), 0<t< co } be a Brownian motion process with drift 8

and variance 1 per unit time. Let T = inf{t : t>m 0, jx(t) I = bt½). It

may be shown (e.g., Siegmund, 1977) that for each 0 ~ 0, as b + ~

(B.l) E
0
T = (b2—l)/8

2 + o(1)

For discrete normal random walk the corresponding expansion contains a

term to account for excess over the stopping boundary, which can be

computed numerically and for small 0 is about

(B.2) 1.166/8

(cf. Lai and Siegmund, 1979).

For sequential tests of the kind discussed in this paper the

expected sample size is

(B.3) E
8min(T,m) = E8 T — I E (T—m)X(m))dP8{T>m} 8

— 
Suppose that b +~~ and m 4~~ in such a way that b = e1~

½. For Gin a

neighborhood of 01, say 0 = 0
1 + ~~~~ it is possible to estimate the

second term on the right hand side of (B.3) to provide reasonable

approximations to E
0min(T,m).

Theorem. Suppose b -‘- ~~ and in + ~ so that for some 01 ~ 
0, b =

For 0 01 + ~m
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(B. 4) E0 min(T ,m) = (b2~~l) /02_ tm½ [8_ ~~81
]~~ f~~~) -~~~(-~

)))

+ e
2
f~(_~~)(1+~~2) -~~~

(
~) ]  + o(l)

A sketch of a proof goes as follows. By (B.l) it suffices to

consider the second term on the right hand side of (B.3), which may be

rewritten as

(B.5) f0 P8{X(m)E01m—dx}(l—P 0(T <m(X(m )=0
1
m—x))E0t (x)

where

T (X) = inf{t : t >O , X( t) = 0
1m

½ [(m+t )½ _m ½ ]+x )

Since 01m
½ {(m+tY~_m

½] < - ~~ 81t, a standard argument using Wald ’s

identity yields

(B.6) E0 T (x) < x/(8 —~~8~ )

Writing the integral in (B.5) as the sum of integrals over (0 ,inl~’8) ,

(in1”8, ~
h / 2  log m) and (m~~

2 log a, cc’) , one sees from (B .6) that the

first and third integrals converge to 0 as m + ~~~. It may also be shown

as in Siegmund (1977) that uniformly in x >

p
0{T < m ) X ( m ) = 0 1m -x }  = o(m~~ ) ,  and hence by (B .5) and (B.6) it

suffices to f ind - an approxima t ion for

1/2
(3.7) m~~~/2 

J

~~ log m 
~ (ml

~
’2 (81

_ 0 )  _ x n i l
~

2)E O Tm (x) dx
1/8a
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A Taylor series expansion and some calculation with Wald ’s identity

shows that uniformly for x < m½ iog m

E0 T (x) = x/(G — -~ G1
) — x2/m0~ + o(x 2/m) ,

which when substituted into (B.7) yields the theorem.

For the entries in Table 1, the quantity (B.2) was added to

(B.4) to obtain a slightly better approximation to E0T. It seems

doubt ful that estimating the excess over the boundary in the correction

term 1(T>m) E8 ( T — mj s )dP 0 is worth the e f for t , since this term is

already relatively small in those cases where the over—all approxima-

tion can be expected to be accurate. The entries in Table 2 were

obtained from the Brownian motion approximation with mean and variance

given by (5) and (6).

28
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APPENDIX C

APPROXIMATE SIGNIFICANCE LEVEL FOR BERNOULLI DATA

Let x , y ,  H, I, and 9. be as in Section 3. The stopping rule

T defined by (4) may be rewritten

(C.l) T = first n > in
0 

such that 9. > a

where a = b2/2. The significance level of the sequential test studied

in Section 3 is given by (7). In this appendix an asymptotic expres-

sion similar to (A.5) is obtained for P(~~~)
{T~~m} as a + in

0 
+

b -
~ ~ in such a way that b = m½~ 1 = m~ 00. The method utilizes the

non—linear renewal theorem and an interesting adaptation of the methods

of Lai and Siegmund (1977). Since the computations are rather

elaborate, they are only given heuristically. The following likelihood

ratio identity is also very helpful in simulating ~~~.

Let F1 
C F

2 
C ... be an increasing sequence of sub-7—algebras

of a basic a—algebra F. Let P and Q be two probabilities on F such

that the restriction P~~~ of P to F is absolutely continuous relative

to the corresponding restriction Q~
1) of Q. Let L~ dP~~~/dQ~~~ be

the likelihood ratio of these restrictions. One version of the funda-

mental identity of sequential analysis says that for any stopping time

a and any event A such that A fl fa = n) E Fn 
for all n,

(C.2 ) P ( A f l f t i < o o } ) = f L dQ
Afl{a<co) 

a

(The proof follows at once by writing (a<co} — Li Ca — n) and using the
n—i

additivity of the integral.)
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In what follows P will be as in Section 3 and

Q = ~~ ~~ P~p p ~~ dp1 dp2

Taking P = P gives(p,p)

* *s +s 2n—s —s
(C.3) L = dP~~~~)/dQ~~~ = 

(it) 
(

U) ~ 
n ~ q n n (n+ 1)

2

where s~ and s = 

~k 
The identity (C.2) gives representa-

tions for P, .,{T< m) and P, .,IT>m , (29. )½ >c} which are useful inm

estimating these probabilities by Monte Carlo methods. One samples

(x1,y 1) ,  (x2 ,y 2) , . ..  according to Q and estimates P(~ ~){T~~m} for

example, by averages of 1CT<m L
T
. (See Siegmund , 1975, for a general

discussion of such importance sampling in sequential analysis and Lai

and Siegmund , 1977 , for an application in a context similar to the pre-

sent one.) This estimator has three advantages over direct simulation:

(i) its variance is smaller; (ii) the expectation under Q of min (T,m)

is smaller than under P where it essentially equals the maximum(p,p)

sample size m; and (iii) P
(~~~)CT~~m} may be estimated simultaneously

for several values of p using the same random numbers. For estimating

ct(p) for a test with c small compared to b this technique is not

variance reducing, but advantages (ii) and (iii) hold in this case as

well.

In contrast to the case of normal variables, where a direct

representation of the probability that T < in by means of (C.2) provided

the starting point of a fruitful asymptotic analysis, in this case an

30
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‘

indirect approach seems advisable. Let u > 0, v > 0, and let

(C.4) P = £~
‘ P
(~~~) ~

u(l_ ~~)
V dVB(u+l , v+1)

so - 
-

(C.5) L =  dp (n) ,dQ (n) 
= (~~~ ) 2 (

~ (~~~/B(u+l ,v+ 1)(u+ +2n+1)(’~~~~~
2
~

~ nJ %‘.s~/ ~u+s +s

Of course, P defined by (C.4) depends on u and v. If u + ~ and v 
+ ~

in such a way that u/(u+v) + p, then the distribution with density

‘(l— ~~)
”/B(u+1, v+l) converges weakly to a point mass at p, so for

each fixed a

(C.6) PCT < m} -
~
- i CT < m}— (p,p) —

Hence for large u and v with u/(u+v) = p an approximation for P1 T<m}

“should be” an approximation for P
(~~~)

{T<m}.

Fix 0 < p1,p2 < 1. Stirling ’s formula and the strong law of

large numbers applied to (C.3) show that with P,, ., probability one,
‘P1 ~2’

as n +

(C.7) log L = — 9. + ~- log n + -~-log p q/p1q1p2q2 + u log p + v log q

— log27r½ — logB(u+1 ,v+1) + o(1) ,

where p = +(p1+p2
) and q = 1—p. Suppose now that a = b2/2 +

in
0 
+ ~ , and m + ~ in such a way that b = ~1

m½ = 0
0
m~. Substitution of

(C.7) into (C.2) and an argument similar to that of Lai and Siegmund

(1977) yields -

31
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(C.8) P C T < n i }

— -~ [B (u+1 , v+l)]
_1
(~

_1
a) ½ e~~

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~ {B(u+ 1, v+l) 1(r
_1
a)½ e a

x ~
~~p1,p2

):01<t2~~p1,p2)1
½ < o~)

where

v(p 1,p 2 ) urn E,
a-’-~

exists by an application of Theorem 1 of Lai and Siegmund (1977).

(Actually, in order that this theorem be applicable it is necessary

that a certain random walk associated with the process 9. be non—
n

arithmetic , which is the case for all p1,p2 with at most a denumerable

number of exceptions . This suffices in view of the subsequent integra-

tion over p1 and p2 .)

Now suppose that u ~ ~ and v + ~ with u/(u+v) p < f. Some

calculation shows that the measure K
~~~

(dp 1,dP2
)

fB(u+1 , v+1)] ’ ~~~~~dp1dp2 has total mass converging to 4p and

converges weakly to a measure uniform on +(pi+p 2
) — p. Hence, a½ e

a

times the right hand side of (C.8) converges to
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(C. 9) ff —½ J v( 2p—~)fI(~ ,2p-.~)}~~ ~~~~~~~~~~~~~~~~~~~~~~~ d~
(O ,2p) f l C~~:01< [2I (~~,2p_~ ) ) ½ < 0

0
)

Together with (C.6) this suggests that

(C. lO) P (~~~ ) {T1m) — C(p;00,01)a
½ e

_a 
(O<p < -~) ,

where C(p;0 0,01) denotes the expression in (C.9) . For < p < 1, a

similar result holds with C(q;60,01) in place of C(p;00,01).

It should be emphasized that the preceding argument is only

heuristic, although it seems to be possible to make it rigorous by

taking u and v as functions of a which tend to slowly with a. The

final result appears to agree formally with a similar very general

result of Woodroof e (l978a), which however, does not apply in this case

because certain smoothness conditions important to Woodroofe ’s method

are not satisfied.
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